A heuristic graph comparison algorithm and its application to detect functionally related enzyme clusters.

نویسندگان

  • H Ogata
  • W Fujibuchi
  • S Goto
  • M Kanehisa
چکیده

The availability of computerized knowledge on biochemical pathways in the KEGG database opens new opportunities for developing computational methods to characterize and understand higher level functions of complete genomes. Our approach is based on the concept of graphs; for example, the genome is a graph with genes as nodes and the pathway is another graph with gene products as nodes. We have developed a simple method for graph comparison to identify local similarities, termed correlated clusters, between two graphs, which allows gaps and mismatches of nodes and edges and is especially suitable for detecting biological features. The method was applied to a comparison of the complete genomes of 10 microorganisms and the KEGG metabolic pathways, which revealed, not surprisingly, a tendency for formation of correlated clusters called FRECs (functionally related enzyme clusters). However, this tendency varied considerably depending on the organism. The relative number of enzymes in FRECs was close to 50% for Bacillus subtilis and Escherichia coli, but was <10% for SYNECHOCYSTIS: and Saccharomyces cerevisiae. The FRECs collection is reorganized into a collection of ortholog group tables in KEGG, which represents conserved pathway motifs with the information about gene clusters in all the completely sequenced genomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DESIGN AND APPLICATION OF A HYBRID META-HEURISTIC OPTIMIZATION ALGORITHM BASED ON THE COMBINATION OF PSO, GSA, GWO AND CELLULAR AUTOMATION

Presently, the introduction of intelligent models to optimize structural problems has become an important issue in civil engineering and almost all other fields of engineering. Optimization models in artificial intelligence have enabled us to provide powerful and practical solutions to structural optimization problems. In this study, a novel method for optimizing structures as well as solving s...

متن کامل

A new Shuffled Genetic-based Task Scheduling Algorithm in Heterogeneous Distributed Systems

Distributed systems such as Grid- and Cloud Computing provision web services to their users in all of the world. One of the most important concerns which service providers encounter is to handle total cost of ownership (TCO). The large part of TCO is related to power consumption due to inefficient resource management. Task scheduling module as a key component can has drastic impact on both user...

متن کامل

بررسی مشکلات الگوریتم خوشه بندی DBSCAN و مروری بر بهبودهای ارائه‌شده برای آن

Clustering is an important knowledge discovery technique in the database. Density-based clustering algorithms are one of the main methods for clustering in data mining. These algorithms have some special features including being independent from the shape of the clusters, highly understandable and ease of use. DBSCAN is a base algorithm for density-based clustering algorithms. DBSCAN is able to...

متن کامل

SIMULATED ANNEALING ALGORITHM FOR SELECTING SUBOPTIMAL CYCLE BASIS OF A GRAPH

The cycle basis of a graph arises in a wide range of engineering problems and has a variety of applications. Minimal and optimal cycle bases reduce the time and memory required for most of such applications. One of the important applications of cycle basis in civil engineering is its use in the force method to frame analysis to generate sparse flexibility matrices, which is needed for optimal a...

متن کامل

A Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm

Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 28 20  شماره 

صفحات  -

تاریخ انتشار 2000